
Modernization Working Group

Mainframe programming languages,
Should I Stay or Should I Go

v2 Dec 2024



Executive summary
COBOL, PLI, and other classic mainframe programming languages have been around for
decades. Despite numerous predictions of their demise, these languages continue to power
critical business applications. However, the ever-increasing challenge with maintaining and
improving legacy applications is a growing concern for CIOs and technology leaders.

In this whitepaper, we look into a pressing question: Are these legacy programming languages
past their prime? To answer this, we propose a framework for assessing the suitability of
continued use of a few mainframe programming languages. Our analysis reveals that while
COBOL benefits from a dedicated community and targeted innovation, languages like PLI and
REXX may require more immediate modernization efforts.

While we focus on a specific set of programming languages, comparing and contrasting with a
few more modern ones, the proposed framework can be applied to any programming language
ecosystem, providing a methodical approach for organizations to prioritize and inform their
application modernization initiatives.

Navigating the Legacy Landscape: A Complex Decision
The decision to modernize legacy applications written in COBOL, PLI, or other historical
mainframe languages is far from straightforward as it involves a complex interplay of factors,
including:

Fig1. Mainframe Languages involve a complex interplay of above features.

1



Application modernization techniques and tools to facilitate the conversion of applications
from older programming languages to modern ones have emerged over the last years, more
recently powered by AI Large Language Models (LLMs). While AI-powered tools offer potential
solutions for automating the conversion process, they have limitations. Scaling these tools to
large, complex applications can be challenging, and their ability to capture business logic and
handle underlying datasets may be limited.

These tools will keep evolving and eventually will get to a maturity point where they will enable a
high degree of automated modernization through AI LLMs. Right now they are still at the initial
stage of the hype cycle and a lot of architecting and manual development effort around outputs
is still required.

Fig2. Gartner hype cycle applied to AI LLMs automating mainframe applications language conversion

Another important consideration is that moving away from legacy programming languages
(and runtimes) requires careful consideration of non-functional aspects. Mainframe runtimes
historically required developers to focus primarily on business logic and business level error
handling. When modernizing applications to a different platform and runtime, developers will
likely need to reevaluate application architecture, non-functionals and technical error handling.

Therefore, to make informed modernization decisions, organizations should evaluate factors
like the programming language ecosystem's health, supportability, and the availability of
developer tools. Understanding the "shelf-life" of programming languages enables better
prioritization of modernization efforts.

This whitepaper aims to provide a structured approach for evaluating the ecosystem around
COBOL, PLI, and REXX, comparing them to more recent languages like Java, Python, and Go.
Our goal is to equip technology leaders with insights and where to prioritize their application
modernization initiatives for mainframe-focused programming languages

2



A decision framework
We started the journey to evaluate the supportability and viability of legacy programming
languages by exploring existing assessment frameworks and guidelines. Unfortunately, all
frameworks we came across didn’t provide a straightforward and practical approach .

Frameworks like the Technology Acceptance Model (Davis 1989), Programming Language
Evaluation Criteria (Sebesta 2012, #), Balanced Scorecard (“The Balanced
Scorecard—Measures that Drive Performance” 1992), FURPS model, and DVF Development
Methodology (“Prioritizr - Confluence”, n.d.) offer valuable perspectives, but they fall short in
assessing the liveness in the ecosystem and supportability of a programming language. For
instance, TAM primarily focuses on user acceptance, BSC lacks technical depth, and PLEC
often overlooks strategic and community-related aspects.

Recognizing these limitations, we developed a framework that addresses both practical,
technical and strategic factors. Our framework (ADRN) covers the following key areas:

● Language Characteristics: Ease of learning, maintenance, and performance.
● Community & Ecosystem: Open-source contributions, active community forums, and

support from major organizations.
● Developer Experience & Compatibility: Code assistance tools, IDE support, and DevOps

workflows.

3



To validate the proposed framework, we applied it on a subset of popular mainframe and
non-mainframe languages, covering legacy languages like COBOL and modern languages like
Go. This comparison demonstrated the framework's versatility and applicability to any
programming language, providing a holistic view for informed decision-making regarding a
programming language’s relevance and risk of continued use.

Are mainframe programming languages past due?

Through our research, we compiled information across a set of key characteristics that should
influence an organization's decision to keep using or replacing a programming language:

1. Easiness of access to source code
2. Syntax easiness of understanding
3. Relative performance for use cases
4. Relative number of open source repositories and forums
5. Key open communities
6. Key enterprise backers
7. Availability of code assistants
8. Availability of IDEs
9. Easiness of integrating with modern app dev patterns

We then analyzed popular mainframe languages (COBOL, PLI, REXX) and non-mainframe
languages (Java, Python, and Go), leading to the findings summarized below. It is important to
note that while Java, Python, and Go are supported on IBM mainframes, we have not looked
into implications of modernizing onto these languages on mainframe as such capability is not
widely available for other legacy mainframe systems.

Language Characteristics

● Legacy challenges: Compiled legacy languages, especially those where source code
was lost, can be difficult to modernize as reverse engineering is hard to execute against
compiled code. Documenting end-to-end processes is required to successfully
reimplement functionality.

● Verbosity: Legacy languages tend to be verbose which is associated with complexity.
However, verbosity can enhance readability at a micro level while it can hinder
understanding at a macro level. Thus, a targeted and progressive modernization is the
best option.

4



Community and Ecosystem

● Open source impact: Open-source communities, forums, and enterprise backing have
significantly influenced the longevity and supportability of programming languages.

● COBOL Revival: COBOL has experienced a resurgence with the emergence of new
communities, tools, and modernization initiatives. Its continued use in industries like
finance and government has driven investment and innovation, extending its longevity.

● PL/I and REXX Challenges: PL/I and REXX have not been as fortunate in terms of
community support and innovation as COBOL.

Developer Experience & Compatibility:

● Developer tools: COBOL saw gaps being filled with new DevOps tools being released and
code assistants powered by AI which lowers developers ramp-up. However the adoption
of new IDEs and DevOps tooling for mainframe hasn’t been consistently prioritized.

● Modern architecture patterns: There are quite a few software industry heavyweights that
made easier integrating legacy applications with modern applications that make use of
microservices, serverless and event-driven architectures. Such solutions become a
stop-gap for the short and medium term.

Overall COBOL is currently in a stronger position regarding supportability than other mainframe
languages, partly due to its widespread use across various industries as depicted in Fig.3.
However, it's important to note that COBOL was primarily designed for large-scale data
processing and may not be the ideal choice for new general-purpose programming projects.
Despite this, existing COBOL applications continue to benefit from a relatively healthy
ecosystem compared to other mainframe languages.

Fig3. COBOL current use across different North America services, Source: Rocket software / MicroFocus, 2023

5



Conclusion

In conclusion, the proposed framework provides a useful approach for assessing the viability of
programming languages and their ecosystems. When applied to mainframe languages, we
found that COBOL possesses a reasonable ecosystem and support, making it suitable for
continued use where requirements have not changed dramatically, and where reliability and
stability in large-scale, data-intensive applications is required.

Organizations using COBOL still need to invest in modernization efforts to integrate their legacy
applications with newer technologies and development patterns. This will ensure COBOL
applications can keep up with today's rapidly evolving technological landscape. Where legacy
applications require extensive code rewriting due to changing needs, a progressive and modular
approach to modernization and replacement will be the best fit.

Furthermore, our analysis suggests that REXX and PLI may be more suitable candidates for
expedite replacement than COBOL, especially for organizations considering application
migration or modernization initiatives triggered by extensive business changes.

6



References

[1] IBM 2024 https://www.ibm.com/topics/mainframe-modernization

[2] “The Balanced Scorecard—Measures that Drive Performance.” 1992. Harvard Business

Review. https://hbr.org/1992/01/the-balanced-scorecard-measures-that-drive-performance-2.

[3] Davis, Fred D. 1989. “Technology Acceptance Model (TAM).” Innovation Acceptance Lab.

https://acceptancelab.com/technology-acceptance-model-tam.

[4] Kizior, Dr. Ronald J., Donald Carr, and Dr. Paul Halpern. 2000. “Does COBOL Have a Future?”

17 (126): 5. 035ab4d33540014200b329436671249ce251254b.

[5] “Prioritizr - Confluence.” n.d. Atlassian.

https://tryble.atlassian.net/wiki/spaces/prioritizr/pages/254738466/Design+Thinking+Desirabi

lity+Viability+and+Feasibility+DVF.

[6] Sebesta, Robert W. 2012. Concepts of Programming Languages. N.p.: Pearson.

7



About this paper

Our authors
This document was developed under the Open Mainframe Project's Summer 2024 Mentorship
program and sponsored by the Mainframe Modernization Working Group.

Special thanks
This work would not be possible without the useful suggestions and feedback of members of
the Mainframe Modernization Working Group, part of the Open Mainframe Project. Special
thanks to Vinu Viswasadhas, Swathi Rao, Misty Decker and Sonya Wilde for their support and
feedback that greatly helped shape the content in this white paper.

About the Modernization Working Group
The Modernization Working Group, part of the Open Mainframe Project, intends to be a focal
point for thought leadership around what it means to modernize mainframe applications.
We are an open group passionate about knowledge sharing, leading constructive discussions,
challenging status quo, exploring creative solutions, and generating contents that will help the
community in their journey.
Learn more about the working group at:
https://openmainframeproject.org/our-projects/working-groups/modernization-working-group/

8

https://openmainframeproject.org/our-projects/working-groups/modernization-working-group/


Appendix I - Comparison of programming language

The definition for each key characteristic we have analyzed is as follows:

1. Easiness of access to source code
Interpreted languages provide source code access and portability.
Compiled applications require maintaining source code separately and have portability
limitations.

2. Syntax easiness of understanding
An easy to follow language syntax is important to both beginners and experienced
programmers.

3. Relative performance for use cases
How efficiently a programming language executes tasks compared to others and what are the
primary use cases

4. Relative number of open source repositories and forums
A larger number of repositories often indicates a vibrant ecosystem and community support.

5. Key open communities
Communities like official foundations, non-profit organizations, or prominent online user groups
that typically provide support and continuous innovation.

6. Key enterprise backers
Prominent software companies that offer software tools, compilers, runtimes and contribution
to programming language standards evolution

7. Availability of code assistants
Tools and technologies that help developers write and debug code faster and more efficiently

8. Availability of multiple options for IDEs
A wide range of IDE options can provide developers with more flexibility and choices tailored to
their workflow.

9. Easiness of integrating with modern App Dev patterns
How easily a programming language can be extended or integrated with cloud-native
application architecture and principles (microservices, containers, serverless, event driven and
others)

9



The next set of tables summarize all the findings for the languages in scope of this analysis.

Criteria COBOL PL/I REXX Java Python Go (Golang)

Language
Characteristics

Easiness of access
to source code

Compiled - need
to safeguard
source code

Compiled - need
to safeguard
source code

Interpreted -
source code
always available

Compiled or
Interpreted

Interpreted -
source code
always available

Compiled - need
to safeguard
source code

Syntax easiness of
understanding

Descriptive
English-like
syntax but with
high verbosity,
leading to initially
steep learning
curve

Complex syntax
with steep
learning curve,
combines
features from
multiple
languages

Moderate
learning curve,
focused on
scripting

Moderate
learning curve,
well-documented
with extensive
learning
resources

Gentle learning
curve, readable
syntax, extensive
tutorials

Moderate
learning curve

Relative
performance for
use cases

High - Optimized
for business data
and records
processing
focused on
non-technical
developers

High - Optimized
for system
programming

Lower - Focused
on sysadmins
and scripting
tasks around
automation and
text processing

Moderate - Good
performance with
JIT compilation
and focused on
general
programming

Lower - slower
than compiled
languages with a
strong focus on
data analysis

High - Designed
for performance
and focused on
general
programming

Community &
Ecosystem

Relative number of
open source
repositories and
forums

Just a few
modern projects
and communities
focused on
specialized use
cases

A niche language
with a limited
number of
repositories and
forums

Very few but
specialized
forums

A robust
ecosystem with a
large number of
open-source
projects and
active forums

An extensive
community with
numerous forums
and open-source
repositories

A growing
number of
projects and
increasing
community

Key open
communities

OpenMainframeP
roject, SHARE,
Free Software
Foundation /
GnuCOBOL SHARE, IBM

Rexx Language
Association, IBM
Rexx

Java Community
Process

Python Software
Foundation,
Google, Google

Key enterprise
backers

IBM,
RocketSoftware,
Broadcom,
Fujitsu, Kyndril

IBM, Rocket
Software /
Microfocus

IBM , Rexx
Systems

Oracle, IBM, Red
Hat

Google,
Microsoft,
Facebook Google, Red Hat

Developer
Experience

Availability of code
assistants

Watson Code
Assistant, cobol
copilot

Watson Code
Assistant, IBM TSO/E

IntelliJ IDEA,
Eclipse , Visual
Studio Code

Github Copilot ,
Tabnine ,

VS Code,
JetBrains
GoLand, Kite

10



Criteria COBOL PL/I REXX Java Python Go (Golang)

Availability of
multiple options for
IDEs

Mix of legacy and
modern IDEs like
Visual Studio,
Eclipse, Rocket
Software
Enterprise
Developer, IBM
Developer for
z/OS, IBM
WaziCode and
Fujitsu NetCOBOL

Mostly legacy
tooling with some
recent IDEs
provided by
Rocket Software /
Microfocus and
IBM

Limited tooling,
primarily within
IBM
environments.
Examples:
oorexx, IBM
TSO/E

Extensive tooling
and IDE support,
including Eclipse,
IntelliJ, VSCode
and others

Extensive tooling
and IDE support,
including
PyCharm, VS
Code, and
Jupyter
Notebooks

Growing tooling
and IDE support,
including VS
Code, JetBrains
GoLand, LiteIDE
and other modern
tools

Compatibility with
New Technologies

Easiness of
integrating with
modern App Dev
patterns

Moderate - Not
designed for
cloud native
architectures but
with an
ecosystem of
tools to facilitate
integration.
Examples: ZOWE,
RocketSoftware,
IBM and others)

Low - Not
designed for
cloud native
architectures and
not easy to
integrate / extend

Low - Not
designed for
cloud native
architectures

High - Supported
by frameworks
like Spring Boot,
Eclipse Vert.x,
Quarkus .

High - Excellent
support for
microservices,
serverless
functions

High - Designed
with cloud native
principles in mind

11


